
Introduction to UNIX Part II

For students of HI 6327 “Biomolecular Modeling”

Willy Wriggers, Ph.D.
School of Health Information Sciences

http://biomachina.org/courses/modeling/03.html

T H E U N I V E R S I T Y of T E X A S

H E A L T H S C I E N C E C E N T E R A T H O U S T O N

S C H O O L of H E A L T H I N F O R M A T I O N S C I E N C E S

Class Objectives

• introduction to student accounts
• basic background in UNIX structure and features
• getting started
• directory navigation and control
• file maintenance and display commands
• shells
• text processing
• resources for future projects

Editing Files with vi Line Editor

Three modes:

• Command mode (“beep mode”)

• Insert mode (“no beep mode”)

• Command line mode (“colon mode”)

Commands are generally case sensitive

vi Cursor Movements

arrow keys (depending on terminal)

h, j, k, l alternates for arrows

ˆF forward one screen

ˆB back one screen

ˆD down half screen

ˆU up half screen

…and many more… (man vi)

vi Deleting Text

dd delete current line

[n] dd delete [n] line(s)

[n] x delete [n] characters

[n] yy yank [n] line(s) to buffer

[n] yw yank [n] word(s) to buffer

vi Inserting Text

p puts yanked or deleted text after cursor

P puts yanked or deleted text before cursor

i insert text before the cursor

a append text after the cursor

I insert text at beginning of line

A append text at end of line

o open new line after current line

O open new line before current line

vi Saving and Exiting

Esc to reach colon mode

:w write changes to file

:wq write changes and quit

:w! force overwrite of file

:q quit if no changes made

:q! quit without saving changes

Editing Files with emacs

• Visual editor

• Move around freely in buffer

• Self-explanatory menu system

• Customizable with .emacs configuration file

• Online help system ^H (control-H)

• Undo changes with ^_ (control-underscore)

• Windows version exists (see online course notes)

emacs Cursor Movements

arrow keys (most terminals)

Alternates:

ˆF next character

ˆB previous character

ˆN next line

ˆP previous line

emacs Cutting and Pasting Text

• Delete characters with Delete key

• Highlight regions of text with mouse (click and
drag), or with ^space on either side

• Cut / delete a larger piece of text with ^W (wipe)

• Paste with ^Y (yank)

emacs Saving and Exiting

^X^S save buffer to file

^X^C exit emacs

Text Processing Commands

• grep / egrep / fgrep - search the argument for all occurences of
the search string; list them

• awk / gawk - scan for patterns in a file and process the results

• sed - stream editor for editing files from script or command
line

The search strings can be generalized to “regular expressions”

Regular Expressions

• allow pattern matching on text

• combine normal and special characters (metacharacters)

• should not be confused with wildcards for matching files

Regular Expression Syntax

Regular expressions come in three different forms:

• Anchors —tie the pattern to a location on the line

• Character sets —match a single character at a single position

• Modifiers —specify how many times to repeat the previous
expression

Regular Expressions can be combined to form longer regular
expressions.

Regular Expression Syntax

. match any single character except newline

* match zero or more instances of single expression

preceding it

[abc] match any of the characters enclosed

[a-d] match any character in enclosed range

Regular Expression Syntax

[ˆabc] match any character NOT in the enclosed set

ˆexp regular expression must start at the beginning

of the line

exp$ regular expression must end at the end of the line

\ treat the next character literally

grep

grep [options] regexp [files...]

The grep utility is used to search for regular expressions in UNIX
files.

fgrep searches for exact strings. egrep uses “extended” regular
expressions.

Some options for grep are:

-i ignore case

-v display only lines that dont match

-n display line number with the line where match was found

gawk
gawk is the open source implementation of the awk pattern
scanning and text processing language. Awk is a full-featured
programming language, beyond the scope of class (see
O’Reilly book “sed & awk”).

Often, gawk is used to extract fields from data files:

cat file1 | gawk ‘{print $1 “,” $3 }’ > file2

pipeline print fields #1 and #3 comma
delimited
fields (if not
white space)

redirect

sed
sed [options] ’{script}’ [file]

The sed utility is a stream editor. A stream editor is used to
perform basic text transformations on an input stream (a file or
input from a pipeline).

Most often, sed is used to replace strings:

cat file1 | sed ‘s/regexp/replacement/g’ > file2

pipeline string
operation

replace all
occurrenes
in line

redirect

Questions: Text and String Editing

The Shell

The shell sits between you and the OS

• acts as a command interpreter

• reads input

• translates commands into actions

read
command

interpret
command

execute
command

display
prompt

Bourne Shell (sh)

• good features for I/O control - often used for scripts

• awkward ‘Old School’ syntax

• not well suited for interactive users

• default prompt is $

C Shell (csh)

• uses C-like syntax for scripting

• I/O more awkward than Bourne shell

• somewhat nicer for interactive use

• job control

• history

• default prompt is %

• uses ~ symbol to indicate a home directory (user’s or
others’)

T-C Shell (tcsh)

• backward compatible with C-shell commands and scripts

• enhanced for interactive use

• file name completion

• command line editing (with left/right arrows)

• command history (with up/down arrows)

Bourne Again Shell (bash)

• backward compatible with Bourne shell commands and scripts

• has some features from C-shell as well (~, history)

• enhanced for interactive use

• file name completion

• command line editing (with left/right arrows)

• command history (with up/down arrows)

Which Shell to Use?

• bash or tcsh: easy to fix typos or redo previous commands.

• most built-in commands are nowadays available in both

• personal programming preference and history

• easy to switch between shells:

• e.g. Cygwin and Linux have bash by default, but by calling tcsh
in .profile (bash startup file) we can start with tcsh terminal

Environment Variables

DISPLAY

EDITOR

PATH

TERM …

(list with env)

csh/tcsh setenv NAME value

sh/bash NAME=value; export NAME

Shell Variables

PS1 (sh/bash)

prompt (csh/tcsh)

others as needed (list with set)

csh/tcsh set name=value

sh/bash name=value

These are used by the shell and shell scripts; not seen or used

by external programs

Shell Startup

The files .profile (sh) or .bash_profile (bash) or .login
(csh/tcsh) are used at login to:

• set path (search path for executables)

• define functions

• set terminal parameters (stty)

• set terminal type

• set default file permissions (umask)

Sample .profile or .bash_profile

PATH=/usr/bin:/usr/ucb:/usr/local/bin:.

export PATH

PS1="{ ‘hostname‘ ‘whoami‘ } "

ls() { /bin/ls -sbF "$@"; }

ll() { ls -al "$@"; }

stty erase ^H

eval ‘tset -Q -s -m ’:?xterm’‘

umask 077

Startup Files sh/csh Family Shells

Used if shell reads /etc/bashrc if it existsbash.bashrc

Executed at logout.bash.bash_logout

Bash ignores .profile if .bash_profile exists.bash.bash_profile

sh, bash.profile

Executed at logoutcsh, tcsh.logout

Tcsh ignores .cshrc if .tcshrc existstcsh.tcshrc

Read for each new shellcsh, tcsh.cshrc

Read only for login shellscsh, tcsh.login

CommentsShellFile

Customizing Start-Up Files

• Files are placed in your home directory
• Define your favorite prompt, shell parameters and more
• Much information is available online:

Search for “customize bash” at google

Shell History

tcsh and bash retain information about former commands
executed within the shell

Customize variables to set number of commands retained:

E.g. in .profile:

HISTSIZE=1000

History saved in ~/.history or ~/.bash_history between
logins.

History Shortcuts

$ history nn

prints last nn commands

$!!

repeats the last command

$!nn

repeats the command numbered nn

$!string

repeats latest command starting with string

Input and Output

I/O redirection and piping in UNIX:

• output redirection to a file

• input redirection from a file

• piping (pipelining): output of one command
becomes the input of a subsequent command

Standard File Descriptors

stdin Standard input to the program

stdout Standard output from the program

stderr Standard error output

These are not called by name at shell prompt, but
are often referenced by these names.

File Descriptors

stdin normally from the keyboard, but can redirect

from a file or command

stdout & stderr normally to the terminal screen, but can

redirect either or both to a file or command

I/O Redirection

> redirect standard output to file

command > outfile

>> append standard output to file

command >> outfile

< input redirection from file

command < infile

| pipe output to another command

command1 | command2

csh/tcsh Advanced Redirection

>& file redirect stdout and stderr to file

>>& file append stdout and stderr to file

|& command pipe stdout and stderr to
command

To redirect stdout and stderr to separate files:

% (command > outfile) >& errfile

sh/bash Advanced Redirection
2>file direct stderr to file

>file 2>&1 direct both stdout and stderr to file

>>file 2>&1 append both stdout and stderr to file

2>&1| command pipe stdout and stderr to command

To redirect stdout and stderr to two separate files:

$ command > outfile 2 > errfile

To discard stderr:

$ command 2 > /dev/null (/dev/null: UNIX “black
hole”)

Special Command Symbols

; command separator

& run the command in the background

&& run the following command only if previous command
completes successfully

|| run the following command only if previous command
did not complete successfully

() grouping — commands within parentheses
are executed in a subshell

Quoting

\ escape the following character (take it literally)

’…’ don’t allow any special meaning to characters within
single quotes (except ! in csh)

”…” allow variable and command substitution inside double
quotes (does not disable $ and \ within the string)

‘…‘ take the output of command in backquotes and substitute it
into the command line (works inside double-quotes)

Shell Scripts

• Similar to DOS batch files

• Quick and simple programming

• Text file, interpreted by shell, effectively new command

• List of shell commands to be run sequentially

• Set execute permission, no special extension necessary

• Best way to learn: Look at examples

First Line

Include full path to interpreter (shell)

#!/bin/sh

#!/bin/csh -f

• csh / tcsh follows C syntax, see man pages, books, and WWW

• In following only brief intro to sh/bash

Special sh/bash Variables

$# Number of arguments on command line

$0 Name that script was called as

$1 – $9 Command line arguments

$@ All arguments (separately quoted)

$* All arguments

$? Numeric result code of previous command

$$ Process ID of this running script

I/O (sh/bash)

echo output text

Talk to user (or ask questions)

read variable

Get input from user, put it in variable

Control Flow (sh/bash)
• test and []

• if [. . .]; then

. . .

fi

• case $variable in . . . esac

• for variable in . . .

• do . . . done

Check sh/bash man page for details, also look at
examples.

Questions: Shells and Shell
Programming

Resources

UNIX man pages

WWW:
http://www.utexas.edu/cc/docs/ccug1http://www.utexas.edu/cc/docs/ccug1
http://http://www.ee.surrey.ac.ukwww.ee.surrey.ac.uk/Teaching/Unix/Teaching/Unix
http://www.ee.surrey.ac.uk/Docs/Unixhelphttp://www.ee.surrey.ac.uk/Docs/Unixhelp

O’Reilly UNIX and Linux Books:
http://unix.oreilly.comhttp://unix.oreilly.com

Figure and Text Credits
Text and figures for this lecture were adapted in part from the following source, in
agreement with the listed copyright statements:

http://wks.uts.ohio-state.edu/unix_course
© 1996 University Technology Services, The Ohio State University, Baker Systems Engineering Building, 1971 Neil Avenue, Columbus,
OH 43210.

All rights reserved. Redistribution and use, with or without modification, are permitted provided that the following conditions are met:
1. Redistributions must retain the above copyright notice, this list of conditions, and the following disclaimer.
2. Neither the name of the University nor the names of its contributors may be used to endorse or promote products or services derived
from this document without specific prior written permission.

THIS PUBLICATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. THIS PUBLICATION MAY INCLUDE
TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.

