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What is Noise?
• Anything that is NOT signal:

Signal is what carries information 
that we are interested in
Noise is anything else

• Noise may be
Completely random (both 
spatially and temporally)
Structured
Structured randomness
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Statistical Review
Mean: The average or expected value

Variance: The expected value of the squared error

Standard Deviation: The square root of the variance
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Covariance
The expected value of the product of the error between two 
elements of the signal:

γij = E{(xi - µi)(xj - µj)}

This measures statistically the relationship between the error for 
the two elements:

γ ij = 0 Independent (not related)

γ ij > 0 Correlated (related)

γ ij < 0 Inversely correlated (inversly related)



Ensembles of Images
Consider the picture Ĩ(x) as a random variable from which we 
sample an ensemble of images from the space of all possibilities

This ensemble (or collection) of images has a mean (average) image, 
Ī(x)

If we sample enough images, the ensemble mean approaches the 
noise-free original signal

Often not feasible



Signal-To-Noise Ratio
If we compare the strength of a signal or image (the mean of the 
ensemble) to the variance between individual acquired images we 
get a signal-to-noise ratio:

The better (higher) the SNR, the better our ability to discern the 
signal information

Problem: How to measure m to compute the SNR?
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Covariance Matrix
We can build a matrix that contains the covariances between all 
samples:

Cij = γ ij

The diagonal elements are the individual sample variances:

Cii = σi
2

A diagonal matrix indicates that the noise at each sample is 
independent of the others, i.e. uncorrelated

Non-zero diagonal elements of C indicate relationships between 
the noise at different positions, i.e. correlated



Additive Noise
Noise is often additive: causing the resulting signal to be sample-
by-sample higher or lower than it should be

Such noise can be modeled by:

Ĩ(x) = Ī(x) + n(x)



Poisson Noise
• Poisson distribution:

Related to the quantum nature of light and matter
For discrete values
Applies only to non-negative values
Variance equal to the mean
Approaches a normal (Gaussian) distribution as the mean gets larger
Because the mean value changes for each pixel, the variance of each pixel 
is different
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White Noise
Many noise process can be modeled by a normal (Gaussian)

Unlike Poisson noise, Gaussian-distributed noise is usually 
uniform over the image

Noise ñ(x) that is
Gaussian-distributed
Zero-mean
Uncorrelated
Additive

is called white noise



Noise and the Frequency Domain
Noisy input:

Ĩ(x) = Ī(x) + ñ(x)

Spectrum of noisy input:

F(Ĩ(x)) = F(Ī(x)) + F(ñ(x))

White noise has equally random amounts of all frequencies

“Colored” noise has unequal amount for different frequencies

Since signals often have more low frequencies than high, the effect of 
white noise is usually greatest for high frequencies



Noise and Systems
Spectrum of noisy input:

F(Ĩ(x)) = F(Ī(x)) + F(ñ(x))

Spectrum of system’s output:

HF(Ĩ(x)) = HF(Ī(x)) + HF(ñ(x))



Solutions
• Filters 

Low pass filter
- eliminate high frequencies and leave the low frequencies.

High pass filter
- eliminate low frequencies and leave high frequencies.  

Band pass filter
- only a limited range of frequencies remains

Gaussian smoothing
- has the effect of cutting off the high frequency components of the 

frequency spectrum



Solutions
• Filters 

image

+

noise

=

‘grainy’
image
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Low-Pass Filter
• Recall that quick changes in a signal/image require high 

frequencies

• High frequency details are often “buried” in noise, which also 
requires high frequencies

• One method of reducing noise is pixel averaging:
Average same pixel over multiple images of same scene
Average multiple (neighboring) pixels in single image



Pixel Averaging
• Averaging multiple images not feasible if:

Object(s) in scene are moving
Only given a single image

• Averaging multiple (neighboring) pixels in a single image:
Gain: reduces noise
Cost: blurring



Noise Filtering
If an image is mainly low frequencies (with some high 
frequencies), white noise corrupts the high frequencies more 
than low

So, reduce the high frequency content of the noisy signal through 
low-pass filtering



Low-Pass Filtering = Spatial Blurring
Low-pass filtering and spatial blurring are the same thing

Any convolution kernel with all positive (or all negative)
weights does:

Weighted averaging
Spatial blurring
Low-pass filtering

They are all equivalent



Filtering and Convolution
Two ways to think of general filtering:

Spatial: Convolution by some spatial-domain kernel

Frequency: Multiplication by some frequency-domain filter

Can implement/analyze either way



Low-Pass Filtering
Tradeoff:

Reduces Noise
but

Blurs Image

The worse the noise, the more you need to blur to remove it

Original After Low-
pass filtering
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“Ideal” Low-Pass Filtering
For cutoff frequency uc:

What is the corresponding convolution kernel?

What problem does this cause?

What could you do differently?
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Better (Smoother) Low-Pass Filtering
Gentler ways of cutting off high frequencies:

Hanning

Gaussian

Butterworth

n controls the sharpness of the cutoff
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Sharpening
• Blurring is low-pass filtering, so de-blurring is high-pass 

filtering:
Explicit high-pass filtering
Unsharp Masking
Deconvolution
Edge Detection

• Tradeoff:
Reduces Blur
but

Increases Noise



High-Pass Filtering
• “Ideal”:

• Flipped Butterworth:
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High-Pass Filtering vs. Low-Pass Filtering

©exchange.manifold.net/manifold/manuals/5_userman/mfd50Image__Filter.htm

Original 

After Low-pass filtering 

After High-pass filtering 



Unsharp Masking
Unsharp masking is a technique for high-boost filtering

Procedure:
Blur the image.
Subtract from the original.
Multiply by some weighting factor.
Add back to the original.

I′ = I + α(I – I * g)

where I′ is the original image, g is the smoothing (blurring) 
kernel, and I is the final (sharpened) image



Unsharp Masking: Frequency Domain

Blur the image Low-pass Filter

Subtract from the original Original – low = high pass

Multiply by a weighting factor Scale high (passed) frequencies

Add back to the original Original + scaled high = high boost

I + a(I – I * g) F(I) + α(F(I) – F(I) · G)



Unsharp Masking: Implementation

I + α(I – I * g)
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Unsharp Masking: Another Way

AI – I * g = (A – 1)I + (I – I * g)
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Unsharp Masking Image

Original Image After Unsharp Masking
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Deconvolution
If we want to “undo” low-pass filter H(u),

Problem 1: This assumes you know the point-spread function
Problem 2: H may have had small values at high frequencies, so Hinv has 

large values (multipliers)

Small errors (noise, round-off, quantization, etc.) can get magnified 
greatly, especially at high frequencies

This is a common problem for all high-pass methods

)(
1)( uHuHinv =



Example: Deconvolution

Before deconvolution After deconvolution
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Hubble space telescope image 



Band-Pass Filtering
Tradeoff: Blurring vs. Noise

Low-Pass: reduces noise but accentuates blurring
High-Pass: reduces blurring but accentuates noise

A compromise:
Band-pass filtering boosts certain midrange frequencies and partially
corrects for blurring, but does not boost the very high (most noise 
corrupted) frequencies



Band-Pass Filtering vs. Low-Pass, High-Pass Filtering

Original Image

After Low-pass filter After High-pass filter After Band-pass filter
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Summary: Filtering
Consider what you want to do in the frequency domain

(the shape of the filter)

Spatial/Temporal DomainFrequency Domain

Convolve in the spatial domainMultiply in the frequency domain

Convert filter to equivalent 
convolution kernel/filter

Convert signal to/from frequency 
domain



Non-linear Operations
They are often mistakenly called “filters”

Strictly speaking, non-linear operators are not filters

They can be useful, though

Examples:
Order statistics (e.g., median filter)
Iterative algorithms (e.g., CLEAN)
Non-uniform convolution-like operations



Median “Filtering”
Instead of a local neighborhood weighted average, compute the 
median of the neighborhood

• Advantages:
Removes noise like low-pass filtering does
Value is from actual image values
Removes outliers – doesn’t average (blur) them into result (“despeckling”)
Edge preserving

• Disadvantages:
Not linear
Not shift invariant
Slower to compute



Median “Filtering”

©John C. Russ
Removal of shot noise with a median filter

Original image

Image a with 10% of the 
pixels randomly 
selected and set to 
black, and another 10% 
randomly selected and 
set to white

Application of 
median filtering 
to image b 
using a 3x3 
square region

Application of 
median filtering to 
image b using a 5x5 
square region



Figure and Text Credits

Text and figures for this lecture were adapted in part from the following source, in 
agreement with the listed copyright statements:

http://web.engr.oregonstate.edu/~enm/cs519
© 2003 School of Electrical Engineering and Computer Science, Oregon State University. Dearborn, Corvallis, Oregon,  97331



Resources 

Textbook:

Kenneth R. Castleman, Digital Image Processing, Chapter 11


